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Abstract

Typical omega 3 polyunsaturated fatty acids (n-3 PUFAs) are docosahexaenoic acid and eicosapentaenoic acid in the form of fish oils and α linolenic acid from
flaxseed oil. Epidemiological studies suggested the benefits of n-3 PUFA on cardiovascular health. Intervention studies confirmed that the consumption of n-3
PUFA provided benefits for primary and secondary prevention of cardiovascular disease. Evidence from cellular and molecular research studies indicates that the
cardioprotective effects of n-3 PUFA result from a synergism between multiple, intricate mechanisms that involve antiinflammation, proresolving lipid
mediators, modulation of cardiac ion channels, reduction of triglycerides, influence on membrane microdomains and downstream cell signaling pathways and
antithrombotic and antiarrhythmic effects. n-3 PUFAs inhibit inflammatory signaling pathways (nuclear factor-κ B activity) and down-regulate fatty acid (FA)
synthesis gene expression (sterol regulatory element binding protein-1c) and up-regulate gene expression involved in FA oxidation (peroxisome proliferator-
activated receptor α). This review examines the various mechanisms by which n-3 PUFA exert beneficial effects against CVD.
Published by Elsevier Inc.
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1. Introduction

Cardiovascular disease (CVD) in the US continues to be the leading
cause of death and accounts for 36% of all deaths [1]. Furthermore,
CVD constitutes the largest proportion of economic burden with an
estimated impact of $475 billion in 2009. Despite the staggering
statistics, CVD death rates have in fact reduced 26% from 1995 to 2005
[2]. Through lifestyle changes, education and therapeutics, the
prevalence of classic CVD reversible risk factors, i.e., smoking, high
blood pressure, high total cholesterol and low-density lipoprotein
(LDL) cholesterol, have decreased over the last 25 years. However,
other independent emerging risk factors, such as hyperglycemia [3,4],
postprandial hypertriglyceridemia [5], hyperinsulinemia [6], oxida-
tive stress [7], endothelial dysfunction [8], total and small dense LDL
cholesterol [9,10], abdominal obesity [11], elevated plasma homo-
cysteine and asymmetric dimethylarginine [12,13], low-level endo-
toxemia [14,15] and elevated circulating concentrations of
inflammatory markers, such as C-reactive protein (CRP), interleu-
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kin-6 (IL-6), fibrinogen and serum amyloid A (SAA) [16], have
surfaced. It is highly possible that CVD mortality rates in the US could
rise again due to the escalating aging population coupled with the
increasing incidence of obesity [17] and type 2 diabetes [18], which
share many of the emerging risk factors for CVD.

An aspect of CVD research focuses on the cardioprotective effects
of fish oils and of individual omega 3 polyunsaturated fatty acids (n-3
PUFA), or more specifically, eicosapentaenoic acid (EPA; 20:5 n-3),
docosahexaenoic acid (DHA; 22:6 n-3) and α linolenic acid (ALA;
18:3 n-3). Many large-scale studies, including primary and secondary
prevention clinical trials and metaanalysis of cohorts, have concluded
that consumption of fatty fish, fish oils or individual n-3 PUFA is an
effective dietary strategy to lower CVDmorbidity, mortality, as well as
classic and emerging risk factors listed above [19–34]. In addition, n-3
PUFA have been shown to improve a number of cardiac hemodynamic
factors such as blood pressure [35,36], left ventricular diastolic filling
[37], heart rate [38,39] and endothelial function [40,41]. The
cardioprotective effects of n-3 PUFA also include arrhythmia
prevention [42], plasma triacylglycerol reduction [43], vascular
relaxation improvement [41], antiinflammatory responses [44],
platelet aggregation inhibition [45], enhancement of plaque stability
[46] and antiatherosclerotic effects [20]. Unlike cardiac pharmaceu-
ticals, n-3 PUFAs have fewer side effects [47] and are generally
recognized as safe (GRAS) by the US Food and Drug Administration.
The American Heart Association/American College of Cardiology
recommends the dietary intake of (1) 1 g of n-3 PUFA (EPA and
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DHA) per day in the form of fish or fish oils for secondary prevention
for individuals with existing coronary and other vascular diseases, (2)
2 to 4 g of n-3 PUFA per day for the treatment of hypertriglyceridemia
and (3) one serving of oily fish twice per week (∼0.5 g of n-3 PUFA per
day) for individuals without documented coronary heart disease [48].
The International Society for the Study of Fatty Acids and Lipids also
recommends at least 0.5 g per day of EPA plus DHA for cardiopro-
tective benefits in healthy adults [49]. Americans consume an average
of approximately 1.6 g total n-3 PUFA per day, of which EPA and DHA
accounts for only 0.1 to 0.2 g and the balance is made up of ALA (18:3
n-3) from plant sources [50]. This is clearly less than the recom-
mended amounts.

Consumption of high amounts of saturated fatty acid (SFA), trans
fatty acid (FA) and omega-6 (n-6) PUFA and low amounts of n-3 PUFA
(approx n-6:n-3 PUFA ratio of 16:1) is a pattern often observed in a
typical Western diet; this is very different from the pattern found in
the diets of our ancestors, who presumably had a n-6:n-3 PUFA ratio
of ~1 [51]. Consequently, cells must adapt to this surplus (n-6) and
deficiency of (n-3) specific dietary PUFA. n-3 and n-6 PUFAs regulate a
number of transcription factors and interact with nuclear receptors
such as peroxisome proliferator-activated receptors (PPARs), liver X
receptor (LXR), hepatocyte nuclear factor-4α, nuclear factor-κB (NF-
κB) and sterol regulatory element binding protein (SREBP), all of
Fig. 1. The metabolism of n-3 and n-6 PUFA and the biosynthesis of their respective eicosanoi
PUFA. However, PGE2 derived from n-6 PUFA can have an antiinflammatory effect by decrea
stimulating 15-LOX. n-3 PUFA-derived eicosanoids have different physiological potencies tha
acid; LTA4, leukotriene A4; LXA4, lipoxin A4.
which influence inflammatory responses and lipid metabolism. An
imbalance of dietary n-6:n-3 PUFA ratio may result in altered gene
regulation and expression in downstream pathways resulting in
altered protein expression and activity that can negatively affect cell
membrane composition and fluidity and organ function. Multiple
mechanisms by which n-3 PUFA exert their cardioprotective effects
have been proposed. This review will discuss the cardioprotective
roles of n-3 PUFA in antiinflammatory processes, inflammation-
resolving capabilities, regulation of transcription factors, acute-phase
reactant (APR) suppression capacities, hypotriglyceridemic effects
and influence on cell membrane properties and vascular function.
2. Essential PUFA: structure and biochemistry

Two classes of essential PUFA exist: n-3 and n-6. From the
standpoint of vascular disease prevention, n-3 PUFAs are the most
important and extensively studied class of essential PUFA. n-3 and n-6
PUFAs are termed “essential” FA and must be obtained from the diet
because humans lack the Δ12- and Δ15-desaturases necessary to
insert a double bond at the n-3 or n-6 position of an FA carbon chain.
The difference between the two essential PUFA is based on the
location of the first double bond of the molecule counting from the
d and proresolving mediators. n-3 PUFAs are generally less inflammatory than the n-6
sing LTB4 production by the inhibition of 5-LOX and increasing production of LXA4 by
n n-6 PUFA-derived eicosanoids. Abbreviations: HPETE, hydroperoxyeicosatetraenoic
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methyl end of the FA. The first double bond of the n-3 PUFA is
between the third and fourth carbon atoms, while the first double
bond of the n-6 PUFA is between the sixth and seventh carbon atoms.
The parent FAs of the long-chain n-3 and n-6 PUFAs are ALA and
linoleic acid (LA; 18:2 n-6), respectively (Fig. 1). Linoleic acid is found
in the nuts, seeds and vegetable oils such as corn, sunflower,
safflower, canola and soybean oil, while ALA is found in seeds of
flax, rape, perilla, walnuts and chia and also in chloroplasts of leafy
green vegetables. Once consumed, ALA is metabolized by Δ6
desaturation, elongation and Δ5 desaturation to yield EPA, which
further undergoes elongation and Δ6 desaturation. The resulting FA is
then converted to DHA via β-oxidation in the peroxisomes. Deep
ocean fish are good sources of EPA, and DHA since the origin of these
FAs in the aquatic ecosystem is algae [52]. Metabolism of dietary LA
uses the same enzymes as in the synthesis of DHA from ALA. Linoleic
acid undergoes Δ6 desaturation, elongation and Δ5 desaturation to
form arachidonic acid (AA; 20:4 n-6). FAs are subsequently
incorporated into triglycerides (TGs; three FAs attached to a glycerol
backbone), phospholipids (PL; two FAs on a phosphatidic acid
backbone) and cholesteryl esters (one FA affixed to free cholesterol).
Because metabolism of LA and ALA to longer chain PUFA shares the
same pathway, the two compete for the same enzymes. High intakes
of LAwould preferentially shift the pathway to elongation of n-6 PUFA
to increase AA production and concurrently inhibit desaturation of
ALA and reduce EPA and DHA formation.

FA concentrations of plasma, cells and tissues are responsive to n-3
PUFA consumption in a dose-dependent manner. Supplementation
with dietary DHA ethyl esters and DHA triacylglycerol increased
plasma and red blood cell (RBC) DHA concentrations in human adults
[53–58]. Supplementation with EPA ethyl esters resulted in an
increase in plasma and serum PL EPA, but DHA concentrations did
not increase because of its inefficient conversion to DHA [56,59,60].
The incorporation of EPA and DHA into the PL of immune cells, that is,
neutrophils, monocytes, T lymphocytes and B lymphocytes, increased
as a result of fish oil consumption [61]. In the RBC, cell membrane PL
became enrichedwith n-3 PUFA during reticulocyte maturation in the
bone marrow and by direct plasma exchange via transfer of serum
albumin-associated DHA and EPA containing lysophosphatidylcho-
line [62,63]. Docosahexaenoic acid concentration in human heart is
about 10 times that of EPA (5.1% vs. 0.5%). In heart transplantation
patients, supplementation with 1 g/day n-3 PUFA (20% DHA and 30%
EPA) for 6 months increased EPA+DHA levels in cardiac biopsies by
110% [64]. In humans, when dietary ALA is provided in the presence of
a high background of n-6 PUFA, small changes in plasma ALA
concentrations, slight increases in plasma EPA and no changes in
plasma DHA (due to low conversion and high oxidation rates) were
observed [65,66]. Premenopausal women exhibit a better efficiency
for the conversion of ALA to EPA than those found in postmenopausal
women and in men. In rats, maximum incorporation of less than 1%
ALA was shown to accumulate in cardiac PL within 8 weeks of a 32-
week feeding study with 15.8 g of ALA/kg diet [67].

3. Mechanisms for the antiinflammatory effect of n-3 PUFA on
cardiovascular health

Inflammation of the vascular wall is a key factor in the dynamic
process of atherosclerosis [68]. Mediators such as oxidized LDL,
lipopolysaccharide (LPS) from gram-negative bacteria, cytokines and
free radical species can trigger the endothelium of the arterial wall to
initiate the cascade of atherosclerosis development. The local
inflammatory response by cytokine-activated endothelium results
in an increased expression of leukocyte adhesionmolecules, including
vascular cell adhesion molecule 1 (VCAM-1), intracellular cell
adhesion molecule 1 (ICAM-1) and E-selectin. Monocytes bind to
the adhesion molecules on endothelial cells and subsequently
transmigrate into the subendothelial space where they transform
intomacrophages. Macrophages are directed toward chemoattractant
cytokines, such as macrophage chemoattractant protein-1 (MCP-1)
secreted by the vascular wall cells in response to the oxidized LDL.
These macrophages scavenge oxidized LDL, become lipid-laden and
convert into foam cells. In the early stages of atherosclerosis, the
accumulation of foam cells evolves into fatty streak. Lesion complica-
tions occur when smooth muscle cells in the intima divide and
produce extracellular matrix molecules, such as collagen, and the
smooth muscle cells in the media migrate to the intima and
contribute to the formation of a fibrous cap. Thrombosis is triggered
when this fibrous cap ruptures.

n-3 PUFAs have the ability to respond to inflammation in
atherogenesis through direct and indirect mechanisms. A direct
mechanism through which n-3 PUFA decrease inflammation includes
its rapid effect on the regulation of transcription factors [69–72], and
indirect modes of actions include the production of three- and five-
series eicosanoids [73,74] and inflammation-resolving lipid media-
tors [75–82] and suppression of APRs [83–85] (Table 1).

3.1. Antithrombotic and antiinflammatory roles of n-3 PUFA

The antiinflammatory action of n-3 PUFA eicosanoids and their
involvement in signaling pathways are mechanisms for their
cardioprotective effects [21]. n-3 PUFA also decreased the production
of several inflammatory cytokines, which will be discussed in Section
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6. Eicosanoids are derived from 20-carbon PUFA, such as AA and EPA,
which are physiologically active compounds that act locally as
signaling molecules through G-protein-linked receptors (Fig. 1). If
AA is predominantly incorporated in the cell membrane PL, then
phospholipase A2 (PLA2) releases AA from the membrane PL in
response to external stimuli, such as an injury or acute or chronic
infection. Free AA serves as a substrate for the enzymes cycloox-
ygenases (COX) to produce two-series prostaglandins (PGE2),
prostacyclins (PGI2) and thromboxanes (TXA2), while 5-lipoxy-
genases (5-LOXs) catalyzes the oxygenation reaction of free AA to
four-series leukotrienes and hydroxyl eicosatetraenoic acids (HETEs).
Generally, the n-6 PUFA-derived eicosanoids are proinflammatory.
Depending upon which enzyme catalyzes the oxygenation (COX or
LOX), these signaling molecules elicit a wide range of responses,
including vasoconstriction, vasodilation, activation of leukocytes,
stimulation of platelet aggregation and generation of reactive oxygen
species. 12-HETE formed from AA in the presence of 12-LOX increase
inflammatory cytokine production [tumor necrosis factor α (TNF-α),
IL-1 and IL-6]. In a study with healthy men, AA supplementation
significantly increased PGE2 and LTB4 production [86]. PGE2 at low
concentration is proinflammatory by eliciting fever, pain and
vasodilation and increase vascular permeability and edema [87]. But
at a higher concentration, PGE2 is antiinflammatory as it decreases
LTB4 production via inhibition of 5-LOX and stimulates lipoxin (LXA4)
synthesis through 15-LOX. PGE2 can also stimulate COX-2 and
stimulate its own production in fibroblasts and IL-6 by macrophages.
Lipoxins are antiinflammatory as it can inhibit NF-κB activation,
leukocyte migration, as well as decrease expression of cytokines and
adhesion molecules [82].

Eicosanoids produced from DHA and EPA are generally less
inflammatory than their AA-derived eicosanoid counterparts
[88,89], serve as vasodilators and inhibit platelet aggregation. n-3
PUFA can reduce the production of AA-derived eicosanoids by
competing with AA for incorporation into cell membrane PL, by
release of free AA by PLA2 or by inhibiting the enzymes COX-2 and 5-
LOX (Fig. 1). This would shift the production of inflammatory
eicosanoids derived from n-6 PUFA to n-3 PUFA. Eicosapentaenoic
acid can suppress COX-2, thereby decreasing two-series PG and TX
production and increasing the three-series PG, PGI and TX. Eicosa-
pentaenoic acid can also inhibit 5-LOX, which decreases production of
four-series LT but increases five-series LT. Docosahexaenoic acid on
the other hand inhibited only COX-2 activity in vitro. However,
supplementation of DHA to healthy men decreased production of
both PGE2, and LTB4 [90]. Whether the decrease in LTB4 in this study
resulted from the direct inhibition of 5-LOX by DHA or it was caused
by the EPA formed by retroconversion cannot be determined from the
information available. Docosahexaenoic acid also decreased the ex
vivo secretion of inflammatory cytokines, TNF-α and IL-1β by the
peripheral blood mononuclear cell (PBMC) stimulated by LPS.

n-3 PUFA and AA compete for the same enzymes (COX-2/5-LOX)
that catalyze the formation of their respective eicosanoids; therefore,
high dietary intakes of n-6 PUFA would result in a dominant
incorporation of AA (vs. n-3 PUFA) in cell membrane PL and
preferentially convert AA to proinflammatory eicosanoids [73,74].
This would ultimately shift eicosanoid production equilibrium toward
proinflammation. Although derivation of proinflammatory eicosa-
noids from AA is a natural response to physiological and pathological
stimuli, consequences of consistent and long-term production of
these eicosanoids from high n-6 PUFA dietary intakes could progress
to chronic diseases such as atherosclerosis. Therefore, one possible
resolution to this problem is a higher consumption of n-3 PUFA in the
diet, that is, decreasing dietary n-6:n-3 ratio, which would result in a
more favorable antiinflammatory state through the reduction of
proinflammatory eicosanoid production capacity of monocytes,
neutrophils, eosinophils, platelets and endothelial cells [44,74,91,92].
In addition to the changes in the concentrations of inflammatory
eicosanoids, fish oil supplementation also decreased plasma as well
the ex vivo production of a number of inflammatory cytokines
including IL-1β, IL-6, IL-8 and TNF-α. These findings have recently
been reviewed [93]. A number of studies have examined the effects of
individual long-chain n-3 PUFA on the ex vivo production and plasma
concentrations of inflammatory cytokines, and the results have been
variable. Thus, we found that DHA supplementation (6.0 g/day) to
healthy men decreased the ex vivo production of IL-1β and TNF-α
after 90 days but not after 45 days of supplementation in healthy
young men [90]. In a subsequent study with DHA (3 g/day, 90 days),
we found DHA decreased the plasma concentrations of IL-6 and
granulocyte macrophage colony-stimulating factor (GM-CSF) and the
number of circulating granulocytes in hypertriglyceridemic men [94].
Docosahexaenoic acid supplements of 0.7 g/day for 12 weeks or of 4.7
g/day for 4 weeks in healthy subjects did not reduce the ex vivo
production of TNF-α, IL-1β, IL-6 and IL-8 [95,96]. Similarly, EPA
supplements of 4.7 g/day for 4 weeks or 4.05 g/day for 12 weeks to
healthy men did not alter the ex vivo production of inflammatory
cytokines [96]. Supplementing EPA or DHA (4.0 g/day, 6 weeks) to
type 2 diabetic patients did not alter plasma concentrations of IL-6
and TNF-α [97]. Our observation regarding the decrease in the
production of inflammatory cytokines is supported by a decrease in
the symptoms of inflammatory diseases and the concentrations of
inflammatory cytokines in a number of studies after fish oil
supplementations [98]. As discussed in Section 3.3, n-3 PUFA decrease
the expression of NF-κB, which regulates the expression of inflam-
matory cytokines. Overall, there is plenty of information indicating
that n-3 PUFAs decrease the production of inflammatory cytokines.
The discrepancies between the results studies discussed above may
be due to differences in study protocols, diets, amounts and durations
of n-3 PUFA supplement, age and health status of the subjects and the
methods used. Effects of n-3 PUFA on the concentrations of APR
proteins will be discussed in Section 3.4.

3.2. Inflammation-resolving effects of n-3 PUFA

Impairment in the resolution of vascular inflammation can
promote atherosclerosis development [99]. Resolution of inflamma-
tion is a programmed normal response that enables the body to
control inflammation and minimize tissue damage by limiting
neutrophil and eosinophil infiltration and nonphlogistic phagocytic
removal of apoptotic cells [78]. Most macrophages exit injured/
infected sites via lymphatics and the inflammation subsides;
however, under certain pathological conditions, inflammatory
responses do not subside and lead to tissue injury. Using lipidomics
and informatics with liquid chromatography–UV–tandem mass
spectrometry-based analysis, inflammation-resolving mediators
LXA4 derived from AA and resolvins and protectins derived from
EPA and DHA were identified and characterized [75–77,79–81]. The
biological activities of these mediators are thought to be another
antiinflammatory mechanism by which n-3 as well as n-6 PUFA, to
some extent, exerts their cardioprotective effects.

The proresolving oxygenated metabolite is derived from AA
catalyzed by 15-LOX and aspirin-acetylated COX-2. They have been
shown to be expressed during the resolution phase of inflammation by
inhibiting the expression of chemokines, cytokines and adhesion
molecules, NF-κB activation and neutrophil migration [82]. In a study
in transgenic rabbits, overexpression of 15-LOX increased the levels of
LXA4 and reduced atherosclerosis through protection of lipid deposi-
tion in the vessel wall [100]. In another study, biosynthesis of LXA4,
through the overexpression of 15-LOX in mice, significantly lowered
macrophage-produced cytokines including IL-1α, IL-1β, TNF-α,
interferon-gamma (IFN-γ) and MCP-1, thus, controlling local inflam-
mation and the development/progression of atherosclerosis [99].
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Other potent oxygenated metabolites found during the resolution
phase of inflammation are (1) resolvins E and D series that are formed
from EPA and DHA, respectively, by aspirin-acetylated COX-2 in
vascular endothelial cells and 5-LOX in leukocytes and (2) protectins
formed from DHA by leukocytes and other cell types by 15-LOX
[76,78,79,81,101]. Resolvins are antiinflammatory through the inhi-
bition of neutrophil transmigration and infiltration by initiating
apoptosis and proinflammatory mediator synthesis [81]. Protectins
are another potent antiinflammatory bioactive compound with the
capacity to block neutrophil recruitment and activation, inhibit COX-2
expression and inhibit TNF-α secretion in an ischemic stroke animal
model and cultured neuronal cells [101]. Protectins, along with
resolvins and lipoxins, can reduce neutrophil recruitment during the
resolution phase of inflammation by increasing the expression of
chemokine receptor 5 (CCR5) on apoptotic neutrophils, thus,
facilitating binding of CCR5 ligands, that is, CCL3 (macrophage
inflammatory protein-1α) and CCL5 (RANTES). Engulfment of these
chemoattracting agents is then removed by macrophages and results
in chemokine clearance to limit further neutrophil infiltration
(regulated by lipoxin, resolvin and protectin) to the inflamed site. In
addition, both resolvins and protectins have the ability to decrease the
production of proinflammatory markers involved in atherosclerosis.
When human aortic endothelial cells were incubatedwith resolvin D1
or protectin D1, MCP-1 and IL-8 were down-regulated by both
metabolites, but only protectin D1 decreased expression of VCAM-1
[99]. A lack in the biosynthesis of resolvins and protectins from n-3
PUFA will prolong local proinflammation and fuel atherosclerosis
progression. Therefore, attenuation of atherosclerotic progression can
be achieved through a synergistic modulation of AA-, EPA- and DHA-
derived mediators (lipoxins, resolvins and protectins), which can
facilitate restoration of inflamed tissues back to homeostasis.

3.3. Regulation of transcription factors by n-3 PUFA

PUFA can affect gene expression bymodulating gene transcription,
mRNA processing and decay and stimulating posttranslational
protein modifications [70–72]. When nonesterified FAs (NEFAs)
enter the cell, they are immediately converted by acyl-CoA synthe-
tases to fatty acyl CoA thioesters (FA-CoAs). The FA-CoAs can then be
esterified to TG, PL and cholesterol esters or used to synthesize
secondary signaling molecules (prostanoids and leukotrienes). PUFA
in the cell can bind to nuclear receptors or transcription factors
involved in lipid metabolism. PUFA also have the ability to regulate
the expression of genes involved in inflammation.

3.3.1. Nuclear factor-κB
Activation of NF-κB transcription factor plays a key role in the

regulation of the expression of genes involved in inflammatory
responses and has been implicated in a number of cardiac-related
disease states [102,103]. Regulation of target genes starts in the
cytoplasm where NF-κB activity is sequestered by its association with
the protein inhibitor-κB (I-κB). Once I-κB is phosphorylated in
response to an inflammatory stimulus (cytokines, viruses, LPS), I-κB
is released, thereby releasingNF-κB and allowing its translocation into
the nucleus to modulate genes involved in inflammatory signaling
pathways. Nuclear factor-κB increases expression of cytokines (IL-1β,
IL-2, IL-6, IL-12, TNF-α, GM-CSF), chemokines (MCP-1, MIP-1α) and
inducible effector enzymes [inducible nitric oxide synthase (iNOS),
COX-2, PLA2]. Activated NF-κB has been detected in fibrotic-thickened
intima in the atherosclerotic vessel wall leading to the progression of
atherosclerotic lesions [104]. Furthermore, in endothelial cell cultures,
NF-κB has been shown to activate the expression of ICAM-1 and
VCAM-1 and to modulate endothelial cell MCP-1 that signals
leukocytes to atherosclerotic lesions [103]. A reversal of such
inflammation-related gene expression has been demonstrated by
inhibiting the NF-κB signal transduction pathway in a gene knock-
downmicemodel via direct gene delivery of short hairpin RNA against
NF-κB p65 [105]. The silencing of NF-κB resulted in a decrease in
cardiac mass and improved cardiac function.

Similarly, n-3 PUFA can decrease the expression of target genes
involved in inflammation through NF-κB. Zhao et al. [106] found that
EPA decreased TNF-α expression through the prevention of NF-κB
activation by impeding I-κB phosphorylation and therefore prevent-
ing NF-κB translocation into the nucleus. This supports the study by
Novak et al. [107], which showed n-3 PUFA inhibited murine
macrophage TNF-α production following LPS stimulation via inacti-
vation of NF-κB secondary to inhibition of I-κB phosphorylation.
Furthermore, in an ischemic brain injury mice model, DHA inhibited
ischemia–reperfusion-induced NF-κB-DNA binding activity and de-
creased COX-2 expression and therefore prostanoid synthesis [101].
Proresolving oxygenated product of EPA, resolvin E1, also has the
ability to terminate NF-κB activation and cytokine production by
binding to the G-protein-coupled receptor chemokine-like receptor 1
(Chem R23) in dendritic cells. This suggests that this ligand-receptor
binding is a counterregulatory response and may be another
antiinflammatory mechanism of n-3 PUFA [75]. Taken together, it
appears that one of the multiple cardioprotective mechanisms of n-3
PUFA is through a decrease in transcription of inflammatory
cytokines, adhesion molecules and COX-2 genes through the
inactivation of NF-κB signal transduction pathway.

3.3.2. Peroxisome proliferator-activated receptors
Peroxisome proliferator-activated receptors, which include the

isoforms PPARα, PPARγ and PPARδ, are a group of nuclear receptors
encoded by different genes. The PPAR isoforms are ligand-regulated
nuclear transcription factors that form heterodimers with retinoid X
receptor (RXR) and bind to peroxisome proliferator response
elements in the promoter region of target genes involved in lipid
metabolism and inflammation and subsequently modulate their
expression. Peroxisome proliferator-activated receptor α and γ
activation has the ability to inhibit expression of proinflammatory
genes by inhibiting NF-κB activation [108–111]. Peroxisome prolif-
erator-activated receptorα activators can improve cardiovascular risk
factors and are antiatherosclerotic through antiinflammatory effects
in vascular smooth muscle cells (VSMCs) by inhibiting cytokine-
induced VCAM-1 expression [112], and PPARγ has antiatherogenic
and antiinflammatory properties in monocyte/macrophages, endo-
thelial cells, adipocytes and VSMCs through its ability to decrease IL-
1β, IL-6 and TNF-α release into circulation when activated [113].

Eicosapentaenoic acid and DHA have been implicated as PPARα/
γ agonists and inhibit NF-κB binding activity. Recent results from
computational methods, that is, molecular dynamics simulation,
confirm very high affinity binding of DHA to PPARs and RXR [114].
This suggests a direct mechanism of n-3 PUFA in regulating target
genes and antiinflammatory effects. Also, n-3 PUFA can activate
PPARα, thereby increasing expression of FA oxidation genes and
resulting in a decrease in hepatic and plasma TG, which would
have an overall beneficial cardioprotective effect for hypertrigly-
ceridemic patients.

3.3.3. Toll-like receptor 4
Inflammatory responses as a result of chronic and unresolved

infection lead to epithelial barrier dysfunction. This results in low-
level endotoxemia that can contribute to the progression of
atherosclerosis [14,15,115]. Chronic inflammation is also a contribu-
tor for atherosclerotic plaque rupture, which is the leading cause of
fatal coronary thrombi [116–118]. Circulating endotoxins, such as LPS
from gram-negative bacteria, bind and activate toll-like receptor 4
(TLR4) on immune cells, including macrophages infiltrating athero-
sclerotic lesions [119], VSMCs [120,121], adipose tissue [122] and



786 Y. Adkins, D.S. Kelley / Journal of Nutritional Biochemistry 21 (2010) 781–792
coronary artery endothelial cells [123]. Furthermore, it has been
proposed to be a key receptor in the development of atherosclerosis
[124]. Toll-like receptor 4 generates downstream signaling cascades
that lead to NF-κB activation and expression of COX-2, inflammatory
cytokines and adhesion molecules. Low-level circulating endotoxin
has been shown to result in a three- to four-fold increase in
proinflammatory cytokine IL-8 and chemokine MCP-1 production in
human saphenous veins [115]. In human vascular aortic smooth
muscle cells, LPS has been shown to induce TLR4 expression, increase
expression of iNOS, thereby increasing NO production, induce
vascular endothelial growth factor and enhance ICAM-1 and VCAM-
1 expression [125]. However, DHA and EPA can interfere with TLR4
activation by LPS or free SFA [126]. In this murine monocyte/
macrophage cell culture model, free lauric acid activated TLR4 and
induced NF-κB activation and expression of COX-2, iNOS and IL-1α.
However, PUFA inhibited COX-2 expression induced by LPS, SFA or
constitutively active TLR4. This observation that n-3 PUFA failed to
inhibit COX-2 expression induced by activation of signaling compo-
nents downstream from TLR4 suggests that the n-3 PUFA directly acts
on TLR4.

3.4. Effect of n-3 PUFA on APRs

Acute-phase reactants are proteins whose concentrations increase
or decrease by 25% during injury or inflammatory states. Chronic
activation of APR can have adverse consequences on health. APR
include ceruloplasmin, C3 component of complements, haptoglobin,
ferritin,α-1 antitrypsin, albumin, transferrin, apolipoprotein CIII (Apo
CIII), CRP, fibrinogen and SAA. Among these APR, elevated levels of
fibrinogen, Apo CIII, CRP and SAA are considered predictors of CVD risk
[16,127–130]. n-3 PUFA supplementation has been shown to have no
or modest effects on fibrinogen levels in humans [131–134]. The Apo
CIII-lowering effects of n-3 PUFA has been shown in hypertriglyceri-
demic men [94], but not in normolipidemic adult subjects [135].
Furthermore, some human studies have observed a decrease in
circulating CRP and SAA concentrations with n-3 PUFA consumption
[136–151], while others have reported no change [152–159]. The
variance between studiesmay be attributed to a shorter duration of n-
3 PUFA supplementation, low n-3 PUFA intakes or subjects with low
baseline CRP concentrations. The difference may also be due to a
polymorphic variant on the APOC3 gene promoter [160].

The mode of action by which n-3 PUFA decreases APR concentra-
tion has mostly focused on its effect on CRP. C-reactive protein is a
stronger predictor of cardiovascular events than LDL cholesterol
[161,162]. The major source of CRP is the hepatocytes, and its
synthesis is regulated by IL-6 and IL-1 [163]. Increased circulating
concentrations indicate pathogenesis of atherosclerosis and inflam-
mation. The mechanisms by which n-3 PUFA decreases CRP may be
through the inactivation of TLR4 and NF-κB and IL-6/IL-1 expression
as discussed above. Another possibility is through the farnesoid X
receptor (FXR), the nuclear receptor for bile acids. Farnesoid X
receptor is a member of the nuclear hormone receptor superfamily
that functions as a ligand-activated transcription factor. When
activated, FXR can inhibit VSMC inflammation and migration through
down-regulation of IL-1-induced iNOS and COX-2 expression [164].
Docosahexaenoic acid, as well as AA and LA, are ligands for FXR [165].
Recently, Zhang et al. [83] demonstrated that an FXR ligand, GW4064,
suppressed IL-6-induced CRP expression in human Hep3B cells. This
was confirmed by using FXR short interfering RNA (siRNA), which
abolished this inhibitory effect and therefore enhanced IL-6 to induce
CRP expression. They also observed that in livers of mice, FXR ligand
WAY-362450 decreased LPS-induced serum amyloid A3 (SAA3) and
serum amyloid P (SAP) mRNA levels — SAA and SAP are the major
acute-phase proteins in mice. This effect was confirmed in FXR
knockout mice, where SAA mRNA levels remained constant.
Other nuclear receptors to which EPA and DHA are ligands for are
the LXRα and LXRβ [166–168]. Liver X receptor ligands have been
shown to delay atherosclerotic development in mouse models and
inhibit atherosclerotic lesion progression [169,170]. Liver X receptors
are involved in cholesterol and FA metabolism and have been
proposed as a target for therapeutic intervention for CVD. Activated
LXRs have the potential to decrease atherosclerotic risk because they
can inhibit intestinal cholesterol absorption, promote bile acid
synthesis in the liver and stimulate cholesterol efflux in macro-
phages [171–174]. More recently, synthetic LXR ligands have been
demonstrated to inhibit IL-6-induced CRP expression in human
hepatocytes [84,85].

4. Effect of n-3 PUFA on cell membrane properties

A physicochemical mechanism by which n-3 PUFAs prevent CVD
may start with the changes in the properties of the cell membrane as a
result of n-3 PUFA incorporation. The type and amount of dietary FAs
can alter the content of the membrane PL FA [175,176] and directly
affect cell membrane properties, such as fluidity [177]. This can lead
to modifications in the way transmembrane proteins, such as
receptors, interact with their ligands [178]. The number and location
of double bonds and the length of the acyl chains will also affect
properties that may influence FA preference of enzymes and
membrane proteins that modulate intracellular signaling pathways
and other physiological functions significantly. For example, 18:0 in
both the sn-1 and sn-2 positions (18:0–18:0) of a phosphatidylcho-
line (PC) molecule has a melting point of 55°C and is, therefore, solid
at physiological temperatures. This is too rigid for physiological
functions; however, the temperature at which the molecule transi-
tions from the solid-to-liquid crystalline phase for 18:0 to 18:2 PC is
−16°C [179]. Recently, determination of the energetics of rotation
about the carbon–carbon bonds of DHA through molecular modeling
of membrane PL bilayers revealed that the DHA acyl chain is highly
flexible and dynamic [180]. This computational experimentation
infers that DHA can closely intercalate between the grooves of cell
membrane bound proteins and may provide a molecular explanation
as to why low concentrations of DHA containing lipids could induce
such large effects on membrane-associated protein systems. Further-
more, Ma et al. [181] found that n-3 PUFA can alter plasmamembrane
microdomains called lipid rafts and caveolae that function as
signaling platforms that regulate cholesterol transport, signal trans-
duction and endocytosis. When n-3 PUFA is introduced, the micro-
domain lipid composition is altered: the sphingomyelin content in
lipid rafts and the cholesterol and caveolin in caveolae are reduced.
The effect of n-3 PUFA-induced cholesterol reduction is a result of
poor incorporation of cholesterol into long-chain n-3 PUFA containing
PL bilayer [182]. Ultimately, the incorporation of n-3 PUFA can lead to
changes in membrane properties, protein functionality and micro-
domain localization of signaling proteins, thus, resulting in the
modulation of downstream cellular signaling pathways [178].

Membrane effects on ion channel conductance by n-3 PUFA have
been studied. Intravenous and dietary administration of n-3 PUFA
have demonstrated antiarrhythmic effects in animals [183–186], cells
[187–190] and humans [31,191–196]. n-3 PUFAs have been shown to
prevent arrhythmias through multiple mechanisms. One direct
mechanism is that n-3 PUFA reducedmembrane electrical excitability
and activity of voltage-dependent Na+ channels in cardiomyocytes.
This is mediated through an increase in the threshold of depolarizing
current required to initiate an action potential and by prolonging the
refractory period following an action potential [42,190]. Fatal
arrhythmias are caused by not only dysfunctional Na+ channels but
also by cytosolic free Ca2+ variability [176]. Hallaq et al. [197] found
that in isolated neonatal rat cardiomyocytes subjected to arrhythmo-
genic stress caused by glycoside ouabain toxicity, EPA and DHA
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exhibited a modulatory action on L-type Ca2+ channels, which
resulted in lowered cytosolic free Ca2+ and Ca2+ influx rate; however,
AA led to Ca2+ overload during a period of ischemic stress. It is
possible that n-3 PUFAs directly bind to the ion channel proteins and
therefore modulate ion channel activity. A single-point mutation at
the 406 of D1-S6 region of the α-subunit Na+ channel decreased
sensitivity to n-3 PUFA, indicating a binding to a specific location on
the Na+ channel protein [198]. Alpha linolenic acid has also been
implicated to have antiarrhythmic effects similarly to those of EPA
and DHA by increasing the threshold for arrhythmia in cardiomyo-
cytes [199]. Ander et al. [200] demonstrated that ALA in a flaxseed-
rich diet is antiarrhythmic in hypercholesterolemic rabbits possibly
through shortening of the action potential. This study also delineated
that this effect was mediated specifically through ALA and not due to
the in vivo conversion of ALA to EPA and DHA.

5. Effect of n-3 PUFA on vascular endothelial and smooth
muscle cells

n-3 PUFAs have beneficial effects on vascular endothelial function
by decreasing endothelial activation. Endothelial cells express ICAM-
1, VCAM-1, E-selectin and P-selectin that are involved in leukocyte
recruitment and platelet adhesion during thrombosis and inflamma-
tion and also contribute to early phases of atherogenesis. Cytokine-
induced endothelial activation has been shown to increase the
expression of genes for ICAM-1, VCAM-1 and E-selectin, and n-3
PUFA have been shown to inhibit the production of inflammatory
cytokines that activate the endothelium. De Caterina et al. [201] found
that culturing endothelial cells with DHA following challenges with
IL-1, IL-4, tumor necrosis factor (TNF-α) or LPS decreased expression
of VCAM-1, ICAM-1 and E-selectin and secretion of IL-6, and IL-8. In
addition, ICAM-1, VCAM-1 and E-selectin mRNA levels were de-
creased in human umbilical vein endothelial cells stimulated with IL-
1β by DHA and EPA [202]. Treatment with n-3 PUFA also decreased
the expression of adhesion molecule in human monocytes [203] and
murine macrophages [204]. A decrease in expression of adhesion
molecules by n-3 PUFA would decrease adhesion and migration of
monocytes to the endothelium thereby mitigating atherosclerosis
development and inflammation.

A balance between the concentrations of vasoconstrictors (TXA2,
PGH2, endothelin-1) and vasodilators (NO, endothelium-derived
hyperpolarizing factor, PGI) that are produced by the endothelium
determines the vascular tone. The vasorelaxant effect of DHA has been
attributed to the decreases in Ca2+ influx in VSMCs [205]. As
discussed above, n-3 PUFA can modify eicosanoid production to
favor vasodilation and antithrombotic actions. It has also been
suggested that n-3 PUFAs increase endothelium-dependent relaxa-
tion through an enhancement of NO release [206]. NO inhibits platelet
aggregation and adhesion, leukocyte adhesion and smooth muscle
cell proliferation. Hirafuji et al. [207] showed that DHA, and to a lesser
degree, EPA and not AA, enhanced IL-1β-induced NO production and
increased iNOS mRNA and protein expression through a mechanism
involving p44/42mitogen-activated protein kinase signaling pathway
in rat VSMCs. Furthermore, DHA-suppressed ischemia induced
arrhythmia in hypertensive rats through the inhibition of TX-like
vasoconstrictor responses in the aorta [208].

Another n-3 PUFA antiatherosclerotic mechanism is its effect on
VSMC. Exaggerated VSMC growth results in arterial damage and is an
important component in the pathogenesis of atherosclerosis
[209,210]. Eicosapentaenoic acid, and DHA to a lesser extent, can
affect vascular function through the inhibition in VSMC growth and
proliferation at various steps of the signal transduction pathway of
growth factors [209–211]. Terano et al. [212] found that EPA
prevented binding of platelet-derived growth factor to its receptor
and activation of protein kinase C and suppressed c-fos mRNA
expression, an early growth gene, via inhibition of c-fos transcription.
Furthermore, EPA and DHA demonstrated an inhibition of DNA
synthesis through cyclins and cyclin-dependent kinases, which
control eukaryotic cell cycle progression [210]. Eicosapentaenoic
acid also has been shown to have a suppressing effect on transforming
growth factor-β and VSMC growth in spontaneously hypertensive
rats [209].

6. Effects of n-3 PUFA on blood TGs

Elevated fasting and postprandial plasma TG levels increase
inflammation and are independent risk factors for CVD. n-3 PUFA
supplementation decreased concentrations TGs and of inflammatory
markers. Thus, DHA supplementation reduced both the fasting and
postprandial TGs by more than 25% in hypertriglyceridemic men [94].
Furthermore, DHA also decreased the concentrations of atherogenic
small dense LDL particles, total LDL particles and the remnant
chylomicron particles [58,94]. As discussed earlier, DHA supplemen-
tation decreased the circulating concentrations of Apo CIII, which
inhibits the activity of lipoprotein lipase (LPL) that controls TG
clearance fromblood. Thus, a reduction in the concentration of ApoCIII
means increased activity of LPL and hence increased clearance of
plasmaTG. ApoCIII-rich lipoproteins also enhancemonocyte adhesion
to vascular endothelial cells [130]. Plasma concentration of Apo CIII is
therefore considered an other emerging lipoprotein-associated mark-
er for CVD risk [160]. n-3 PUFA also regulate Apo CIII through their
effects on PPARα, which down-regulates Apo CIII expression [213],
and NF-κb, which up-regulates Apo CIII expression [214].

n-3 PUFA can also decrease TG concentration through the
inhibition of hepatic very low-density lipoprotein (VLDL)-TG synthe-
sis and secretion that is secondary to a decrease in TG synthesis. This
decrease in VLDL-TG secretion may be due to the decrease in the
expression of hepatic gene transcription factor, SREBP-1c, which is the
key switch in controlling lipogenesis. The LXRα/RXRα heterodimer
regulates the expression of SREBP-1c by 2 LXR response elements
(LXREs) in the SREBP-1c promoter. n-3 PUFA-mediated suppression of
SREBP-1c promoter activity is possibly due to the prevention of the
binding of the LXR/RXR heterodimer to the LXREs in the SREBP-1c
promoter region so as to decrease SREBP-1c expression [215]. This in
turn would diminish the synthesis of acetyl-CoA carboxylase and FA
synthase. The net effect is a decrease in FA synthesis. The TG lowering
effect may also be due to the simultaneous increase in mitochondrial
and/or peroxisomal β-oxidation, which may be a direct result of
increased PPARα-induced increase in acyl-CoA oxidase gene expres-
sion and therefore lead to reduced FA substrate for TG synthesis [45].
Another nuclear receptor with TG lowering potential is FXR.
Docosahexaenoic acid is an FXR ligand and has been shown to
suppress the expression of hepatic lipase and Apo CIII and increase
Apo CII and VLDL-receptor gene expression in HepG2 cells [216–219].
Another TG lowering mechanism by n-3 PUFA include the decreased
activity of key enzymes in TG biosynthesis, such as phosphatidic acid
phosphohydrolase or diacylglycerol (DG) acyltransferase that cata-
lyzes phosphatidate to DG and DG to TG, respectively. An overall
decrease in TG production by n-3 PUFA in adipose tissue would
ultimately lead to decreased serum NEFA transport.

7. Concluding remarks

Based on the results from cellular and molecular studies, the
cardioprotective effects of n-3 PUFA appear to be due not through a
single mode of action but to a synergism between multiple, intricate
mechanisms that involve TG lowering, antiinflammatory, inflamma-
tion-resolving, regulation of transcription factors and gene expres-
sion, membrane fluidity and antiarrhythmic and antithrombotic
effects. Eicosapentaenoic acid and DHA have similar yet very
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distinctive cardioprotective properties. Only DHA seems to decrease
blood pressure, heart rate and the number of total and small dense
LDL particles. Docosahexaenoic acid also has higher potency to
regulate the activity of several transcription factors than EPA.
Scientific knowledge regarding the cardioprotective benefits of n-3
PUFA has been translated into nutritional guidelines for improving
cardiovascular health, and it has the potential to be used for the
improvement or resolution of other inflammatory diseases.

More than ever, n-3 PUFA availability has increased not only
from marine vertebrate origin, but also from native and transgenic
algae and plants. Cardiovascular disease in the US continues to be
the leading cause of death and may rise in years to come due to the
escalating aging population and increasing incidence of obesity and
type 2 diabetes. Further research on the overlapping and indepen-
dent mechanisms by which EPA and DHA prevent and reverse CVD
is needed.
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